Semi-automatic identification of independent components representing EEG artifact.
نویسندگان
چکیده
OBJECTIVE Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. METHODS CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. RESULTS For eye-related artifacts, a very high degree of overlap between users (phi>0.80), and between users and CORRMAP (phi>0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi<0.70), and between users and CORRMAP (phi<0.65). CONCLUSIONS These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. SIGNIFICANCE CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
منابع مشابه
A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis.
Contamination of electroencephalographic (EEG) recordings with different kinds of artifacts is the main obstacle to the analysis of EEG data. Independent component analysis (ICA) is now a widely accepted tool for detection of artifacts in EEG data. One major challenge to artifact removal using ICA is the identification of the artifactual components. Although several strategies were proposed for...
متن کاملArtifact Removal from EEG Using a Multi-objective Independent Component Analysis Model
Independent Component Analysis (ICA) has been widely used for separating artifacts from Electroencephalographic (EEG) signals. Still, a few challenging problems remain. First, in real-time applications, visual inspection of components should be replaced with an automatic identification method or a heuristic for artifacts detection. Second, as we will explain more in the paper, we expect to have...
متن کاملAutomatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks
Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brai...
متن کاملClassification of independent components of EEG into multiple artifact classes.
In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification pe...
متن کاملA Combined Wavelet Packet-blind Source Separation Approach for Identification and Removal of Muscle Artifacts from Electroencephalogram
Electromyogram (EMG) induced electrical activity is an undesirable interference in cerebral electroencephalogram (EEG) data. We propose an efficient algorithm for automatic detection and removal of EMG artifact, while preserving most of the true cerebral activity in the EEG. First, the EEG data are decomposed into independent components (IC) using canonical correlation based blind source separa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 120 5 شماره
صفحات -
تاریخ انتشار 2009